
2962 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 8, AUGUST 2005

On the Time Complexity of Computer Viruses

Zhi-hong Zuo, Qing-xin Zhu, and Ming-tian Zhou, Member, IEEE

Abstract—Computer viruses can disable computer systems not only by
destroying data or modifying a system’s configuration, but also by con-
suming most of the computing resources such as CPU time and storage.
The latter effects are related to the computational complexity of computer
viruses. In this correspondence, we investigate some issues concerning the
time complexity of computer viruses, and prove some known experimental
results mathematically. We prove that there exist computer viruses with ar-
bitrarily long running time, not only in the infecting procedure but in the
executing procedure. Moreover, we prove that there are computer viruses
with arbitrarily large time complexity in the detecting procedure, and there
are undecidable computer viruses that have no “minimal” detecting proce-
dure.

Index Terms—Computational complexity, computer viruses, detection,
infection, time complexity.

I. INTRODUCTION

The first abstract theory of computer viruses is the viral set theory
given by Cohen, based on the Turing machine [1], [2]. A viral set is
defined by (M;V) whereM is a Turing machine and V is a nonempty
set of programs on the Turing machine. Each v 2 V is called a com-
puter virus and satisfies the following condition: if it is contained in the
tape at time t, then there exist a time t0 and a v0 2 V such that v0 is not
contained in the tape at time t, but contained in the tape at time t0. The
most important one of Cohen’s theorems is about the undecidability of
computer viruses [1], [2].

In a different approach, Adleman developed an abstract theory of
computer viruses based on recursive functions [3]. In his definition,
a virus is a total recursive function v which applies to all programs
x (the Gödel numberings of programs), such that v(x) has character-
istic behaviors of computer viruses such as injury, infection, and imi-
tation. Furthermore, Adleman proved that the set of computer viruses
is

2
-complete [3].

Although several abstract theories about computer viruses were
established and many important results were derived from these theo-
ries, we know little about the computational complexity of computer
viruses. Very little research has been done so far in this respect.
Adleman [3] discussed some problems but failed to give any conclu-
sion. Spinellis [4] proved that to reliably identify the bounded-length
of computer viruses is NP-complete. To our best knowledge, there is
no more results on computational complexity of computer viruses.

In the following, we investigate some issues on the time complexity
of computer viruses. We focus on two kinds of time complexity: the
time complexity of computer viruses in their computational environ-
ment, and the time complexity of detecting computer viruses. It is well
known that there exist arbitrarily complex recursive functions [5], [6],
but we cannot apply this fact to computer viruses directly, because com-
puter viruses are some “fixpoints” of recursive operations [3]. On the
other hand, theoretical results about the time complexity of detecting
computer viruses are very important to antivirus practice.

Manuscript received July 13, 2004; revised December 26, 2004.
The authors are with the College of Computer Science and Engineering,

University of Electronic Science and Technology of China, Chengdu, Sichuan,
610054 China (e-mail: zhzuo@uestc.edu.cn;qxzhu@uestc.edu.cn; mtzhou@
uestc.edu.cn).

Communicated by T. Johansson, Associate Editor for Complexity and Cryp-
tography.

Digital Object Identifier 10.1109/TIT.2005.851780

The structure of the correspondence is as follows: In Section II, we
introduce some notations; in Section III, we give definitions of com-
puter viruses based on recursive functions. In Section IV, we prove
some auxiliary lemmas and then derive main results about time com-
plexity of computer viruses. In Section V, we give a brief summary and
some suggestions for future research.

II. PRELIMINARIES

We describe some notations below.
Let be the set of all natural numbers and S be the set of all

finite sequences of natural numbers. For s1; s2; . . . ; sn 2 S, let
hs1; s2; . . . ; sni denote a computable injective function from Sn to

and its inverse is also computable. If f : ! is a partial
function, for s1; s2; . . . ; sn 2 S, we write f(s1; s2; . . . ; sn) in-
stead of f(hs1; s2; . . . ; sni). Similarly, for i1; i2; . . . ; in 2 , let
hi1; i2; . . . ; ini denote a computable injective function from n to
, satisfying hi1; i2; . . . ; ini � im for all 1 � m � n, and its

inverse is also computable. For a partial function f : n ! , let
f(i1; i2; . . . ; in) represent f(hi1; i2; . . . ; ini).
For a sequence p = (i1; i2; . . . ; ik; . . . ; in) 2 S, let (p)k denote its

kth element, and p[jk=ik] denote the sequence obtained by replacing
ik with jk in p, that is,

p[jk=ik] = (i1; i2; . . . ; jk; . . . ; in):

If v is a computable function, p[v(ik)=ik] is simply written as p[v(ik)].
If more than one elements in p are replaced or evaluated by some com-
putable functions, we write the result as

p[jk =ik ; jk =ik ; . . . ; jk =ik] or p[v1(ik); v2(ik); . . . ; vl(ik)]

respectively.
Adopting Adleman’s notations [3], let �P (d; p) denote a function

computed by a computer program P in the running environment (d; p)
where d represents data (including clock, spaces of diskettes, and so
on) and p represents programs (including operating systems) stored on
computers. If the index (the Gödel numbering) of P is e, the function is
also denoted by�e(d; p). The domain and range are denoted byWe and
Ee, respectively. If h is a recursive function, we also use the symbols
Wh andEh for its domain and range. It is worth noting that there is no
essential distinction between d and p, as in the case of Von Neumann
machine. In this correspondence, we use the symbol (d; p) just for easy
understanding.
For any program P , let tP be the function defined as follows:

tP (d; p) =

number of steps taken
byP to compute �P (d; p); if �P(d; p) is defined
undefined; otherwise

=�t(P (d; p) stops in t steps): (1)

If e is an index of P , we write te(d; p) for tP (d; p). It is obvious
that Dom(te) = Dom(�e) for all e, and the predicateMMM(e; hd; pi; y)
defined byMMM(e; hd; pi; y) � \te(d; p) ' y" is decidable [6].
We say that a predicateQQQ(n) holds for almost alln, ifQQQ(n) holds for

all n but finitely many numbers n. Equivalently, there is a number n0
such thatQQQ(n) holds for all n � n0. This property is simply denoted
by QQQ(n) a.e.(almost everywhere).

III. DEFINITIONS OF COMPUTER VIRUSES

In this section, we extend Adleman’s definitions about computer
viruses [3] to comply with common understanding of computer viruses
[7].

0018-9448/$20.00 © 2005 IEEE

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 8, AUGUST 2005 2963

Defintion 3.1 (Nonresident Virus): A total recursive function v is
called a nonresident virus if for all x, v satisfies the following

a)

�v(x)(d; p) =

D(d; p); if T (d; p) (i)
�x(d; p[v(S(p))]); if I(d; p) (ii)
�x(d; p); otherwise (iii).

(2)

b) D(d; p) and S(p) are two recursive functions. T (d; p) and
I(d; p) are two recursive predicates such that there is at least
one pair of (d; p) in which I(d; p) holds, and that there is no
(d; p) in which both T (d; p) and I(d; p) hold simultaneously.

c) The set f(d; p) : :(T (d; p) _ I(d; p))g is infinite.

T (d; p) and I(d; p) are called injury condition (trigger) and infection
condition, respectively. When T (d; p) holds, the virus executes the in-
jury function D(d; p), and when I(d; p) holds, the virus chooses a
program by selection function S(p), infects it first, then executes the
original program x. Conditions T (d; p) and I(d; p) together with func-
tions D(d; p) and S(p) are called the kernel of a nonresident virus in
the rest of this correspondence, because they determine a nonresident
virus uniquely.

In definition 3.1, formula (i), (ii), and (iii) describe three typical types
of behavior of computer viruses, namely, injury, infection, and imita-
tion. Condition b) guarantees that an infected program would infect
at least one other program, and the infection and injury action cannot
be completed simultaneously. In other words, infectivity is an indis-
pensable attribute of computer viruses. Condition c) requires that an in-
fected program imitates the original program at infinitely many points.
It is a quite strong condition and necessary for the important prop-
erty that the set of one type of computer viruses with same kernel is

2-complete [7]. However, it is not needed in investigating time com-
plexity about computer viruses.

We may define almost all kinds of computer viruses in this way.
For example, we can give similar definitions for other kinds of com-
puter viruses which are both important and interesting, theoretically
and practically. In these definitions, we no longer list conditions b) and
c) as in Definition 3.1, but assume they are included in all of these def-
initions.

Defintion 3.2 (Polymorphic Virus With Two Forms): The pair (v; v0)
of two different total recursive functions v and v0 is called a polymor-
phic virus with two forms if for all x, (v; v0) satisfies

�v(x)(d; p) =

D(d; p); if T (d; p)

�x(d; p[v
0(S(p))]); if I(d; p)

�x(d; p); otherwise
(3)

and

�v (x)(d; p) =

D(d; p); if T (d; p)

�x(d; p[v(S(p))]); if I(d; p)
�x(d; p); otherwise.

(4)

Polymorphic viruses with n forms can be defined as an n-tuple
(v1; v2; . . . ; vn) of n different total recursive functions, under similar
conditions as in Definition 3.2. Polymorphic viruses have spread
widely in the last ten years and caused a lot of trouble as they are
very hard to detect. Polymorphic viruses have billions of forms and in
general any two forms do not have three consecutive bytes in common.
However, polymorphic viruses are not the hardest viruses to detect.
Two other kinds of viruses, the polymorphic viruses with infinite
forms and metamorphic viruses [8] are a real challenge.

Defintion 3.3 (Polymorphic Virus With Infinite Forms): A total re-
cursive function v(m; x) is called a polymorphic virus with infinite
forms if for all m and x, v(m;x) satisfies

�v(m;x)(d; p) =

D(d; p); if T (d; p)

�x(d; p[v(m+ 1; S(p))]); if I(d; p)
�x(d; p); otherwise

(5)

and for all m 6= n, v(m;x) 6= v(n; x).
Up to now polymorphic viruses with infinite forms have not been

found in the real world, but their existence can be proved by the recur-
sion theorem of [7] just like ordinary computer viruses.

Defintion 3.4 (Metamorphic Virus): The pair (v; v0) of two different
total recursive functions v and v0 is called a metamorphic virus if for
all x, (v; v0) satisfies

�v(x)(d; p) =

D(d; p); if T (d; p)

�x(d; p[v
0(S(p))]); if I(d; p)

�x(d; p); otherwise
(6)

and

�v (x)(d; p) =

D0(d; p); if T 0(d; p)

�x(d; p[v(S
0(p))]); if I 0(d; p)

�x(d; p); otherwise
(7)

where T (d; p) (resp., I(d; p),D(d; p),S(p)) is different from T 0(d; p)
(resp., I 0(d; p), D0(d; p), S0(p)).

A metamorphic virus (v; v0) seems to combine two different com-
puter viruses v and v0. But, there is a crucial distinction between a
metamorphic virus and a pair of two viruses, that is, when v infects
a program, the program is indeed infected by v0 (not v), and vice versa.
The metamorphic virus (v1; v2; . . . ; vn) can be defined in the similar
way. The main difference between a metamorphic virus and a polymor-
phic virus is that each form of a polymorphic virus has the same kernel,
but each component vn of a metamorphic virus has its own kernel [8].
More discussions about computer viruses can be found in [7].

IV. MAIN RESULTS

In this section, we prove the main results of this correspondence,
using the traditional notations and symbols in recursive function
theory([9], [10]).

Lemma 4.1: LetR be an infinite recursive set and b(x) be a total re-
cursive function. Then there exists a recursive subset A � R such that
te(x) > b(x) a.e., where e is any index of the characteristic function
of A.

Proof: Let g be an increasing total recursive function with Eg =
R. Define

ig(y) =

�i[i � y and idiffers from
all previously defined ik if such an i exists
and ti(y) � b(y)];

undefined; otherwise.
(8)

Since

ti(y) � b(y), 9z � b(y)(ti(y) ' z) (9)

and “ti(y) ' z” is a recursive predicate, there is an effective procedure
to decide whether ig(y) is defined, and to compute its value when it is
defined. Consider the function

f(x) =

1; if x = g(y) for some y,
ig(y) is defined and �i (y) = 0

0; otherwise.
(10)

2964 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 8, AUGUST 2005

SinceR is an recursive set, f(x) is a well-defined total recursive func-
tion. Let �e = f , by diagonal construction of f(x), e 6= ig(x) when-
ever ig(x) is defined.

Now, for any c such that tc(x) � b(x) for infinitely many x, let

s = 1 +maxfm : ig(m) is defined and ig(m) < cg

(s = 0 if m does not exist). Choose p such that p � maxfc; sg and
tc(p) � b(p). If c = ig(m) for somem < p, there is nothing to prove.
Assuming c 6= ig(m) for all m < p, we have

c � p and c differs from all previously defined im and tc(p) � b(p):
(11)

Hence, c is the least index satisfying (11). From the definition (8) we
know that ig(p) is defined and equals c. Thus, we have obtained that
for any c satisfying tc(x) � b(x), for infinitely many x, there exists
a y such that c = ig(y). Since e 6= ig(y) whenever ig(y) is defined, it
follows that te(x) > b(x) a.e.

Let A = fx : f(x) = 1g. A is a recursive set, and A � R.

Roughly speaking, Lemma 4.1 implies that for any infinite recursive
set, there exists a recursive subset whose decision procedures have ar-
bitrarily large time complexity.

Corollary 4.1: For any total recursive function b(x), there exists a
recursive set A such that te(x) > b(x) a.e., where e is any index of
characteristic function defined by

f(x) =
1; x 2 A

0; x 62 A:
(12)

Proof: Let R = , by Lemma 4.1 we have the conclusion.

Corollary 4.2: Let b(x) be a total recursive function and R be re-
cursively enumerable but not a simple set. Then there exists a recursive
set C � R such that te(x) > b(x) a.e., where e is any index of char-
acteristic function of C .

Proof: Since R is recursively enumerable and not simple, its
complement R contains an infinite recursively enumerable set B
that again has an infinite recursive subset B0. Applying Lemma 4.1
to B0, there is a recursive subset A, A � B0 � B � R such that
te(x) > b(x) a.e., where e is any index of characteristic function of
A. Let C = A, then C is the set required.

Lemma 4.2: Let b(x) be a total recursive function. For any recursive
function f(x; y; z), there exists a total recursive function k(x; y) such
that �k(x;y)(z) = f(x; y; z) and te(x; y) > b(x) a.e. for all y, where
e is any index of k(x; y).

Proof: By the s–m–n theorem, there is a total recursive function
r such that

c�r(x;y;s)(z) = 1(s)f(x; y; z) (13)

and r(x; y; s) satisfies r(x; y; s1) 6= r(x; y; s2) (if s1 6= s2) [6].
Define

k(x; y) =

r(x; y; 1); if ix is defined
and �i (x) = r(x; y; 0)

r(x; y; 0); otherwise
(14)

where ix is given by (8) for R = and g(y) = y. From the proof of
Lemma 4.1, k(x; y) is a total recursive function and te(x; y) > b(x)
a.e. for all y, where e is any index of k(x; y).

Since

�k(x;y)(z) =

�r(x;y;1)(z); if ix is defined
and �i (x) = r(x; y; 0)

�r(x;y;0)(z); otherwise

=

111(1)f(x; y; z); if ix is defined
and �i (x) = r(x; y; 0)

111(0)f(x; y; z); otherwise
= f(x; y; z) (15)

this completes the proof of the lemma.

Lemma 4.2 extends the s–m–n theorem in the sense that the index
function k(x; y) could be any recursive function, not just the primitive
recursive function as in the s–m–n theorem. Lemma 4.1 can be further
extended as follows.

Lemma 4.3: For each m1, m2, n � 1, let m = m1 + m2 and
b(xxx) be a total recursivem1-ary function. There exists a total recursive
(m+ 1)-ary function smn (c; xxx; yyy) such that

�
(m+n)
c (xxx; yyy; zzz) = �

(n)
s (c;xxx;yyy)(zzz)

and te(xxx; yyy) > b(xxx) a.e. for all yyy, where e is any index of smn (c; xxx; yyy).

Lemma 4.3 implies that for any type of computer viruses, there exists
a computer virus v whose infecting procedure has arbitrarily large time
complexity. This conclusion is formulated in the following theorem.

Theorem 4.1: Let b(x) be a total recursive function. For any kind of
computer viruses, there exists a computer virus v(x) such that te(x) >
b(x) a.e., where e is any index of v(x).

Proof: Let b(x) be a total recursive function. Consider

f(x; k; hd; pi) =

D(d; p); if T (d; p)
�x(d; p[�k(S(p))]); if I(d; p)
�x(d; p); otherwise.

(16)

By Lemma 4.3, there is a total recursive function h(x; k) such that

�h(x;k)(d; p) = f(x; k; hd; pi) (17)

and te(x; k) > b(x) a.e. for all k, where e is any index of h(x; k).
By the s–m–n theorem, there exists a total recursive function r(k)

such that �r(k)(x) = h(x; k). By recursion theorem, there is an n such
that �r(n) = �n. Let v(x) = h(x; n) = �r(n)(x) = �n(x), then

�v(x)(d; p) = �h(x;n)(d; p) = f(x; n; hd; pi)

=

D(d; p); if T (d; p)
�x(d; p[�n(S(p))]); if I(d; p)
�x(d; p); otherwise

=

D(d; p); if T (d; p)
�x(d; p[v(S(p))]); if I(d; p)
�x(d; p); otherwise.

(18)

By Definition 3.1, the total recursive function v(x) is a nonresident
virus and te(x) > b(x) a.e., where e is any index of v(x). Similar re-
sults also hold for other kinds of computer viruses defined in Section III
and [7]. This completes the proof of the theorem.

Intuitively, we can construct a virus with arbitrarily large time com-
plexity in its infection procedure by adding time-consuming operations
in the procedure. But Theorem 4.1 implies more than that. Since by our
definition a virus v(x) is a recursive function mapping a program x into

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 8, AUGUST 2005 2965

its infected form v(x), Theorem 4.1 shows that for any kind of com-
puter viruses there is a virus v such that any implementation of v can
have arbitrarily large time complexity in its infection procedure.

It is natural to ask whether there exists a computer virus v such that
the infected program v(x) has arbitrarily large time complexity for any
program x. In general the answer is NO, because �x may be a partial
recursive function, and if so, by infinite imitation requirement (see c)
in Definition 3.1) the function �v(x)(d; p) computed by the infected
program v(x) is also a partial recursive function, as well as the func-
tion tv(x)(d; p). Hence, the comparison with a total recursive function
b(d; p) may be meaningless at infinitely many points. But for total re-
cursive functions we have the following result.

Theorem 4.2: Let b(x) be a total recursive function. There exists a
computer virus v(x) such that tv(x)(d; p) > b(d; p) a.e. for any total
recursive function �x.

Proof: For each x; k 2 , consider

f(x; k; hd; pi) =

1; if ihd;pi is defined
and �i (d; p)=0

0; if ihd;pi is defined
and �i (d; p) 6=0

�x(d; p[�k((p)1)]); if ihd;pi is undefined
and (d)1 = 0

�x(d; p); otherwise

(19)

where ihd;pi is defined in (8) withR = and g(d; p) = hd; pi. By the
proof of Lemma 4.1, f(x; k; hd; pi) is a recursive function, and if �x is
a total recursive function and e is an index of f , then te(d; p) > b(d; p)
for almost all hd; pi.

From the proof of Theorem 4.1, there is a total recursive function
v(x) satisfying

�v(x)(d; p) =

1; if ihd;pi is defined
and �i (d; p) = 0 (i)

0; if ihd;pi is defined
and �i (d; p) 6=0 (i0)

�x(d; p[v((p)1)]); if ihd;pi is undefined
and (d)1 = 0 (ii)

�x(d; p); otherwise (iii).
(20)

By Definition 3.1, the total recursive function v(x) is a nonresident
virus. (In (20), condition (i) and (i0), (ii), (iii) denote injury, infection,
and imitation of nonresident viruses, respectively.)

Since v(x) is an index of the recursive function f , it follows that
tv(x)(d; p) > b(d; p) a.e. for total recursive function �x.

Virus detection is one of the most important issues in antivirus prac-
tice. It is well known that the set of all computer viruses is undecidable
[1]. Furthermore, there exists a computer virus v such that the set of
its infected programs is undecidable [3], [11]. In other words, we can
never find a procedure to pick up exactly all the programs infected by
v. Formally, let Iv = Ev = fv(x) : x 2 g [3], then Iv is a nonre-
cursive recursively enumerable set. To find all programs infected by v,
it is necessary to find a recursive set C such that Iv � C . This implies
that for every detecting procedure of v, if it has no false negatives, then
it always has false positives.

Although most of the computer viruses in real world are decidable,
there are still two unresolved questions. 1) If Iv is decidable, what is its
time complexity? 2) If Iv is undecidable, what is the time complexity of
the recursive set containing Iv? The following theorem gives a partial
answer to the first question.

Theorem 4.3: Let b(x) be a total recursive function, then there exists
a decidable computer virus v such that te(m) > b(m) for infinitely
manym, where e is any index of characteristic function of Iv .

Proof: Let A be an infinite recursive set and g be an increasing
recursive function with Eg = A. Consider

h(x; k; y; hd; pi) =
f(x; k;m; hd; pi); 9m:y = g(m)

IdIdId; otherwise
(21)

where IdIdId is the identity function, and f is defined by

f(x; k;m; hd; pi) =

D(d; p); if T (d; p)

�x(d; p[�k(g(m+ 1); S(p))]); if I(d; p)
�x(d; p); otherwise.

(22)

From the proof of Theorem 4.1, there is a recursive function s(x; y)
such that

�s(x;y)(d; p) =
f 0(x;m; hd; pi); 9m:y = g(m)

IdIdId; otherwise
(23)

and

f
0(x;m; hd; pi) =

D(d; p); if T (d; p)

�x(d; p[s(g(m+1); S(p))]); if I(d; p)
�x(d; p); otherwise.

(24)

Moreover, s(x; y) is an increasing function [10]. Let v(m;x) =
s(g(m); x), then

�v(m;x)(d; p) =

D(d; p); if T (d; p)

�x(d; p[v(m+ 1; S(p))]); if I(d; p)
�x(d; p); otherwise.

(25)

By Definition 3.3, v is a polymorphic virus with infinite forms.
Let Iv = fv(m;x)jm; x 2 g. Since g and s are increasing func-

tions, v is also an increasing function. This implies that v is a decid-
able virus and Iv is recursive. Let r(m) = v(m;n), then m 2 A ,
r(m) 2 Iv . By Corollary 4.1, there is a set A such that te (x) >

b(r(x)) a.e., where e0 is any index of the characteristic function of A.
Now suppose c is the characteristic function of Iv and e is one of

its indices, since c(r(x)) is the characteristic function ofA, te(r(x) >
b(r(x)) a.e.. Letm = r(x), this completes the proof of the theorem.

When Iv is undecidable, we should consider the time complexity
of the recursive sets containing Iv . The following theorem shows that
for any undecidable computer virus, there is one detecting procedure
which has arbitrarily large time complexity.

Theorem 4.4: Suppose v(x) is a computer virus and Iv is a non-
recursive recursively enumerable set. For any total recursive function
b(x) there exists a recursive set C � Iv such that te(x) > b(x) a.e.,
where e is any index of the characteristic function of C .

Proof: Let v be a computer virus and IdIdId be the identity function.
By Rice’s theorem, fij�i � IdIdIdg is a recursively enumerable set. By
Definition 3.1 b),�v(x) is not an identify function for all x. This implies
if i is any index of IdIdId, then i 62 Iv . Hence, fij�i � IdIdIdg \ Iv = ; and
Iv is not a simple set. By Corollary 4.2 we have the conclusion.

If v is an undecidable computer virus, that is, Iv is a nonrecursive
recursive enumerable set, then (C � Iv) is infinite for any recursive
set C containing Iv . This implies that any of its detecting procedures
which can pick up all of its infected program, will make infinitely many
errors (false positives). However, it is often desired to find the detecting
procedure that gives “minimal” errors. In other words, we want to find

2966 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 8, AUGUST 2005

a minimal recursive set C such that Iv � C . Here a recursive set C
containingA is called minimal means that for any recursive setB such
that A � B � C , the set (C �B) is finite. In the following theorem,
we prove that this desired minimal recursive set does not exist for some
computer viruses. The proof, inspired by Adleman [3], depends on the
following lemma.

Lemma 4.4: Let A be a creative set. Then there is no minimal re-
cursive set containing A.

Proof: Let p(x) be the productive function of A. If x satisfies
Wx \ A = ;, then clearly p(x) 62 Wx and p(x) 62 A. By the s–m–n
theorem, let g be a recursive function such that for all x

Wg(x) = Wx [fp(x)g:

Suppose C is a recursive set such that A � C , and let D = C . Since
D is recursively enumerable, D = We for some e. Now let

H = fp(e); g(p(e)); g(g(p(e))); . . .g:

Clearly H is recursively enumerable. Since p(e); g(p(e));
g(g(p(e))); . . . are pairwise distinct, H is infinite and has
some infinite recursive subset J . Also, by the above properties,
H \D = H \ A = ;. Hence, J � C and A � J . Let B = C � J ,
then B is recursive and A � B � C , but (C �B) is infinite.

Theorem 4.5: There exists computer virus v such that Iv is nonre-
cursive and there is no minimal recursive set containing it.

Proof: Let j(i; y) be an increasing padding function, i.e., for all
i and y, �j(i;y)(x) = �i(x). LetKKK = fe : e 2Weg and g be the total
recursive function such thatKKK = Eg . Consider the function

h(i) =
j(1; g(y)); i = j(1; y)

j(i; g(0)); otherwise.
(26)

It is clear that �h(i)(x) = �i(x). Let c(y) = j(1; y), since j is a
one-to–one function, it follows that

y 2KKK , c(y) 2 Eh: (27)

Now let f(x; k) be the one-to-one total recursive function such that

�f(x;k)(d; p) =

D(d; p); if T (d; p)
�x(d; p[�k(h(S(p)))]); if I(d; p)
�x(d; p); otherwise.

(28)

From the proof of Theorem 4.1, there exits a total function s(x) such
that

�s(x)(d; p) =

D(d; p); if T (d; p)
�x(d; p[s(h(S(p)))]); if I(d; p)
�x(d; p); otherwise.

(29)

Substituting x by h(x) in (29), it follows that

�s(h(x))(d; p) =

D(d; p); if T (d; p)
�h(x)(d; p[s(h(S(p)))]); if I(d; p)
�h(x)(d; p); otherwise

=

D(d; p); if T (d; p)
�x(d; p[s(h(S(p)))]); if I(d; p)
�x(d; p); otherwise.

(30)

Let v = sh, then v is a nonresident virus by Definition 3.1. Since s is a
one-to-one total function, x 2 Eh , s(x) 2 Iv . Combined with (27)
we have

y 2KKK , s(c(y)) 2 Iv (31)

i.e.,KKK �1 Iv . It means Iv is 1-complete set, hence equivalently cre-
ative set. From Lemma 4.4, it follows that there is no minimal recursive
set containing Iv .

V. CONCLUSION

In this correspondence, we discussed the time complexity of com-
puter viruses. The main contributions are as follows.

1) We proved that there are computer viruses with arbitrarily large
time complexity, not only in their infecting procedures, but also
in their executing procedures.

2) We proved that there are computer viruses whose detecting pro-
cedures have sufficiently large time complexity.

3) We proved that there are undecidable viruses which have nomin-
imal detecting procedure.

It is worth noting that in our discussions we used only the following
two features of te:

1) Dom(te) = Dom(�e) for all e; and
2) “te(x) ' y” is decidable.

If we take these two conditions as axioms (as in [5]), all of the conclu-
sions on time complexity of computer viruses can be extended directly
to other computational complexity satisfying these two assumptions,
such as space complexity of computer viruses, etc.
Contrary to the conclusion of Theorem 4.4, in antivirus practice we

are concerned more about the existence of a recursive set C satisfying
Iv � C and the characteristic function of C have “low” time com-
plexity, such as linear or polynomial time complexity. This problem is
trivial when C = , but if we require that (� C) is infinite and C
is as small as possible, it is an open problem.
For example, typical pattern-based virus-detection software is usu-

ally based on the Boyer–Moore string-searching algorithm [12] (or
similar algorithms), and can detect most of simple computer viruses
with false positives in linear time. But it is not clear whether there are
linear or polynomial algorithms which can work for all kinds of com-
puter viruses, especially for undecidable computer viruses.

ACKNOWLEDGMENT

The authors wish to thank the referees for their helpful comments
that improved the correspondence greatly.

REFERENCES

[1] F. Cohen, “Computational aspects of computer viruses,” Computers &
Security, vol. 8, no. 1, pp. 325–344, 1989.

[2] , A Short Course on Computer Viruses. New York: Wiley, 1994.
[3] L. M. Adleman, “An abtract theory of computer viruses,” in Advances in

Cryptology–CRYPTO’88 (Lecture Notes in Computer Science), S. Gold-
wasser, Ed. Berlin, Germany, 1988, vol. 403, pp. 354–374.

[4] D. Spinellis, “Reliable identification of bounded-length viruses is
NP-complete,” IEEE Trans. Inf. Theory, vol. 49, no. 1, pp. 280–284,
Jan. 2003.

[5] M. Blum, “Amachine-independent theory of the complexity of recursive
function,” J. ACM, vol. 14, no. 2, pp. 322–336, 1967.

[6] N. Cutland, Computability: Introduction to Recursive Function Theory.
Cambridge, U.K.: Cambridge Univ. Press, 1980.

[7] Z. H. Zuo and M. H. Zhou, “Some further theoretical results about com-
puter viruses,” Comp. J., vol. 47, no. 6, pp. 625–633, 2004.

[8] P. Ször and P. Ferrie. (2000) Hunting for Metamorphic. [Online]. Avail-
able: http://www.virusbtn.com

[9] H. J. Rogers, Theory of Recursive Functions and Effective Com-
putability. New York: McGraw-Hill, 1967.

[10] R. I. Soare, Recursively Enumerable Sets and Degrees. New York:
Springer-Verlag, 1987.

[11] D.M. Chess and S. R.White, “An undetectable computer virus,” inProc.
Virus Bulletin Conf., Orlando, FL, Sep. 2000.

[12] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”
Commun. ACM, vol. 20, no. 10, pp. 262–272, Oct. 1977.

